Yet another attack on whitebox AES implementation

Patrick Derbez ${ }^{1}$, Pierre-Alain Fouque ${ }^{1}$, Baptiste Lambin ${ }^{1}$, Brice Minaud ${ }^{2}$

${ }^{1}$ Univ Rennes, CNRS, IRISA

${ }^{2}$ Royal Holloway University of London

6)言IRISA EMSEC 종

(1) Introduction
(2) The Baek, Cheon and Hong proposal
(3) Dedicated Attack
(4) Generic attack
(1) Introduction
(2) The Baek, Cheon and Hong proposal
(3) Dedicated Attack

4 Generic attack

Black box vs. White box

Black box model

Black box vs. White box

Black box model White box model

White box implementation

Attacker:

- extracting key information from the implementation
- computing decryption scheme from encryption scheme

Designer:

- provide sound and secure implementation

Main application:

- Digital Rights Management
- Fast (post-quantum ©) public-key
 encryption scheme

Two main design strategies

- Table lookup
- First proposal by Chow et al. in 2002: broken
- Xiao and Lai in 2009: broken
- Karroumi et al. in 2011: broken
- Baek et al. in 2016: our target
- WhiteBlock from Fouque et al.: secure (but weird model)
- ASASA-like designs
- SASAS construction: broken in 2001 by Biryukov et al.
- ASASA proposals (Biryukov et al., 2014): broken
- Recent proposals at ToSC'17 by Biryukov et al. to use more layers, leading to SA...SAS

CEJO Framework

- Derived from Chow et al. first white-box candidate constructions.
- Block cipher decomposed into R round functions.
- Round functions obfuscated using encodings.
- Obfuscated round functions implemented and evaluated using several tables (of reasonable size)

$$
\cdots \circ \underbrace{f^{(r+1)^{-1}} \circ E^{(r)} \circ f^{(r)}}_{\text {table }} \circ \underbrace{f^{(r)^{-1}} \circ E^{(r-1)} \circ f^{(r-1)}}_{\text {table }} \circ \ldots
$$

- Increase security with external encodings

Baek et al.'s toolbox

- Proposed by Baek, Cheon and Hong in 2016.
- Toolbox dedicated to SPN under CEJO framework
- Generic method to recover non-linear part of encodings
- Generic algorithm to recover the linear component of encodings

Finding non-linear part not higher than recovering linear part

- New AES white-box construction
- Based on CEJO framework
- Parallel AES
- Resisting their toolbox (110 bits of security)
- Our target
(2) The Baek, Cheon and Hong proposal
(3) Dedicated Attack

4 Generic attack

The Baek, Cheon and Hong proposal

Round function of $A E S: A E S^{(r)}=M C \circ S R \circ S B \circ A R K$

Sparse input encoding

$$
A(x)=\left(\begin{array}{cccc}
A_{0,0} & A_{0,1} & & \\
& A_{1,1} & A_{1,2} & \\
& & \ddots & \ddots \\
A_{31,0} & & & A_{31,31}
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{31}
\end{array}\right) \oplus\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{31}
\end{array}\right)
$$

$$
M=A^{-1} \circ M C \circ S R
$$

(1) Split M in columns blocks of size 8 s.t. $M=\left(M_{0}|\ldots| M_{31}\right)$
(2) $M \cdot x=\bigoplus_{i=0}^{31} M_{i} \cdot x_{i}$
(3) 16-bit to 256-bit mappings: $F_{i}=M_{i} \circ S \circ \oplus_{\left(k_{i} \oplus a_{i}\right)} \circ\left(A_{i, i}, A_{i, i+1}\right)$
(9) Round function:

$$
F^{(r)}\left(x_{0}, \ldots, x_{31}\right)=\bigoplus_{i=0}^{31} F_{i}\left(x_{i}, x_{i+1}\right)
$$

Complexity

Time complexity

- R AES rounds: $32 R$ table lookups $+31 R$ xor of 256 -bits words.
- For $R=10$: 320 table lookups +310 xor of 256 -bit words.

Very fast

Memory requirement

- R AES rounds: $32 R 16$-bit to 256 -bit mappings.
- For $R=10$: 320 16-bit to 256-bit mappings

$\approx 160 \mathrm{MB}$

Issue

16-bit to 256-bit mappings: $F_{i}=M_{i} \circ S \circ \oplus_{\left(k_{i} \oplus a_{i}\right)} \circ\left(A_{i, i}, A_{i, i+1}\right)$

Remark

$F_{i}(x, 0)=M_{i} \circ S \circ \oplus_{\left(k_{i} \oplus a_{i}\right)} \circ A_{i, i}(x)$ is a 8-bit to 256-bit mapping.

- Composing with right projection \Rightarrow affine equivalent to AES Sbox.

Issue

16-bit to 256-bit mappings: $F_{i}=M_{i} \circ S \circ \oplus_{\left(k_{i} \oplus a_{i}\right)} \circ\left(A_{i, i}, A_{i, i+1}\right)$

Remark

$F_{i}(x, 0)=M_{i} \circ S \circ \oplus_{\left(k_{i} \oplus a_{i}\right)} \circ A_{i, i}(x)$ is a 8-bit to 256-bit mapping.

- Composing with right projection \Rightarrow affine equivalent to AES Sbox.

Possible to recover affine mappings in $\mathcal{O}\left(2^{25}\right)$ using the affine equivalence algorithm from Biryukov et al..

Affine Equivalence Algorithm

In 2003, Biryukov, De Cannière, Braeken and Preneel proposed an algorithm to solve the following problem:

Given two bijections S_{1} and S_{2} on n bits, find affine mappings \mathcal{A} and \mathcal{B} such that $S_{2}=\mathcal{B} \circ S_{1} \circ \mathcal{A}$, if they exist.

- Ascertain whether such mappings exist
- Enumerate all solutions
- Time complexity in $\mathcal{O}\left(n^{3} 2^{2 n}\right)$

Affine Equivalence Algorithm

In 2003, Biryukov, De Cannière, Braeken and Preneel proposed an algorithm to solve the following problem:

Given two bijections S_{1} and S_{2} on n bits, find affine mappings \mathcal{A} and \mathcal{B} such that $S_{2}=\mathcal{B} \circ S_{1} \circ \mathcal{A}$, if they exist.

- Ascertain whether such mappings exist
- Enumerate all solutions
- Time complexity in $\mathcal{O}\left(n^{3} 2^{2 n}\right)$
- Time complexity for linear version in $\mathcal{O}\left(n^{3} 2^{n}\right)$

Baek et al. Proposal

To avoid this weakness, take 32 random 8-bit to 256-bit mappings h_{i}. The 16 -bit to 256 -bit tables are defined as

$$
T_{i}(x, y)=F_{i}(x, y) \oplus h_{i}(x) \oplus h_{i+1}(y)
$$

And we can evaluate the encoded round function with

$$
\bigoplus_{i=0}^{31} T_{i}\left(x_{i}, x_{i+1}\right)=\bigoplus_{i=0}^{31} F_{i}\left(x_{i}, x_{i+1}\right)=F^{(r)}\left(x_{0}, \ldots, x_{31}\right)
$$

Security claim : 110-bit

(2) The Baek, Cheon and Hong proposal
(3) Dedicated Attack

4 Generic attack

Overview of the attack

From encoded round functions $F \simeq M \circ S \circ A$ with $A \simeq\left(\begin{array}{lll}* & * \\ * & \ddots & { }_{*}\end{array}\right)$
(1) Reduce the problem to block diagonal encodings :
$\Rightarrow \widetilde{F}=M \circ S \circ B$ with B block diagonal.
(2) Compute candidates for each block:
(1) Using a projection, $P \circ M \circ S \circ B_{i}$ is affine equivalent to S.
(2) Use the affine equivalence algorithm from [BCBP03] to get some candidates for B_{i}.
(3) Identify the correct blocks :

Use a MITM technique to filter the wrong candidates

Reducing the problem to block diagonal encodings

Decompose A in $A=B \circ \widetilde{A}$ with:

- B block diagonal affine mapping built from B_{i} 's (unknown)
- \widetilde{A} with same structure as A, built from blocks $\left(0_{8} \mathrm{Id}_{8}\right) \circ E_{i}^{-1}$ (known)

Reducing the problem to block diagonal encodings

Decompose A in $A=B \circ \widetilde{A}$ with:

- B block diagonal affine mapping built from B_{i} 's (unknown)
- \widetilde{A} with same structure as A, built from blocks $\left(0_{8} \mathrm{Id}_{8}\right) \circ E_{i}^{-1}$ (known)

For all $0 \leq i \leq 31$:
(1) compute $\operatorname{Ker} L_{i}$ with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)(8 \times 16$ matrix $)$
(2) get a basis $\left(e_{1}, \ldots, e_{8}\right)$ of Ker L_{i}
(3) complete this basis $\Rightarrow E_{i}=\left(e_{1} \ldots e_{16}\right)$
(9) $\exists B_{i} 8 \times 8$ invertible matrix s.t. $L_{i}=B_{i} \circ\left(0_{8} \mathrm{Id}_{8}\right) \circ E_{i}^{-1}$

Find Ker L_{i} with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)$

For any $(a, b) \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$:
(1) $x \in \operatorname{Ker} A_{i, i} \Rightarrow y \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$ is constant
(2) $y \in \operatorname{Ker} A_{i, i+1} \Rightarrow x \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a \oplus x, y)$ is constant
(3) $(x, y) \in \operatorname{Ker} L_{i} \Rightarrow T_{i}(a, b) \oplus T_{i}(a \oplus x, b) \oplus T_{i}(a, b \oplus y) \oplus T_{i}(a \oplus x, b \oplus y)=0$

If $\mathrm{x} \in \operatorname{Ker} A_{i, i}$ then :

Find Ker L_{i} with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)$

For any $(a, b) \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$:
(1) $x \in \operatorname{Ker} A_{i, i} \Rightarrow y \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$ is constant
(2) $y \in \operatorname{Ker} A_{i, i+1} \Rightarrow x \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a \oplus x, y)$ is constant
(3) $(x, y) \in \operatorname{Ker} L_{i} \Rightarrow T_{i}(a, b) \oplus T_{i}(a \oplus x, b) \oplus T_{i}(a, b \oplus y) \oplus T_{i}(a \oplus x, b \oplus y)=0$

If $\mathrm{x} \in \operatorname{Ker} A_{i, i}$ then :

$$
\begin{aligned}
& T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y) \\
& =f_{i}\left[A_{i, i}(a \oplus x) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x) \oplus h_{i+1}(b \oplus y) \\
& \quad \oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a) \oplus h_{i+1}(b \oplus y)
\end{aligned}
$$

Find Ker L_{i} with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)$

For any $(a, b) \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$:
(1) $x \in \operatorname{Ker} A_{i, i} \Rightarrow y \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$ is constant
(2) $y \in \operatorname{Ker} A_{i, i+1} \Rightarrow x \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a \oplus x, y)$ is constant
(3) $(x, y) \in \operatorname{Ker} L_{i} \Rightarrow T_{i}(a, b) \oplus T_{i}(a \oplus x, b) \oplus T_{i}(a, b \oplus y) \oplus T_{i}(a \oplus x, b \oplus y)=0$

If $\mathrm{x} \in \operatorname{Ker} A_{i, i}$ then :

$$
\begin{aligned}
& T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y) \\
& =f_{i}\left[A_{i, i}(a \oplus x) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x) \oplus h_{i+1}(b \oplus y) \\
& \quad \oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a) \oplus h_{i+1}(b \oplus y)
\end{aligned}
$$

Find Ker L_{i} with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)$

For any $(a, b) \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$:
(1) $x \in \operatorname{Ker} A_{i, i} \Rightarrow y \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$ is constant
(2) $y \in \operatorname{Ker} A_{i, i+1} \Rightarrow x \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a \oplus x, y)$ is constant
(3) $(x, y) \in \operatorname{Ker} L_{i} \Rightarrow T_{i}(a, b) \oplus T_{i}(a \oplus x, b) \oplus T_{i}(a, b \oplus y) \oplus T_{i}(a \oplus x, b \oplus y)=0$

If $\mathrm{x} \in \operatorname{Ker} A_{i, i}$ then :

$$
\begin{aligned}
& T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y) \\
& =f_{i}\left[A_{i, i}(a \oplus x) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x) \oplus h_{i+1}(b \oplus y) \\
& \quad \oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a) \oplus h_{i+1}(b \oplus y) \\
& =f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x) \\
& \quad \oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a)
\end{aligned}
$$

Find Ker L_{i} with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)$

For any $(a, b) \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$:
(1) $x \in \operatorname{Ker} A_{i, i} \Rightarrow y \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$ is constant
(2) $y \in \operatorname{Ker} A_{i, i+1} \Rightarrow x \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a \oplus x, y)$ is constant
(3) $(x, y) \in \operatorname{Ker} L_{i} \Rightarrow T_{i}(a, b) \oplus T_{i}(a \oplus x, b) \oplus T_{i}(a, b \oplus y) \oplus T_{i}(a \oplus x, b \oplus y)=0$

If $\mathbf{x} \in \operatorname{Ker} A_{i, i}$ then :

$$
\begin{aligned}
& T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y) \\
& =f_{i}\left[A_{i, i}(a \oplus x) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x) \oplus h_{i+1}(b \oplus y) \\
& \quad \oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a) \oplus h_{i+1}(b \oplus y) \\
& =\frac{f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x)}{\oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a)}
\end{aligned}
$$

Find Ker L_{i} with $L_{i}=\left(A_{i, i} A_{i, i+1}\right)$

For any $(a, b) \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$:
(1) $x \in \operatorname{Ker} A_{i, i} \Rightarrow y \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$ is constant
(2) $y \in \operatorname{Ker} A_{i, i+1} \Rightarrow x \mapsto T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a \oplus x, y)$ is constant
(3) $(x, y) \in \operatorname{Ker} L_{i} \Rightarrow T_{i}(a, b) \oplus T_{i}(a \oplus x, b) \oplus T_{i}(a, b \oplus y) \oplus T_{i}(a \oplus x, b \oplus y)=0$

If $\mathrm{x} \in \operatorname{Ker} A_{i, i}$ then :

$$
\begin{aligned}
& T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y) \\
& =f_{i}\left[A_{i, i}(a \oplus x) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x) \oplus h_{i+1}(b \oplus y) \\
& \quad \oplus f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a) \oplus h_{i+1}(b \oplus y) \\
& = \\
& \quad \underline{f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a \oplus x)} \\
& \quad \oplus \underset{f_{i}\left[A_{i, i}(a) \oplus A_{i, i+1}(b \oplus y) \oplus c_{i}\right] \oplus h_{i}(a)}{ }=h_{i}(a \oplus x) \oplus h_{i}(a)
\end{aligned}
$$

Computing candidates for each block B_{i}

We decomposed A into $B \circ \widetilde{A}$ where B is a block diagonal affine mapping. Hence

$$
\sum_{j=0}^{31} T_{j} \circ \widetilde{A}^{-1}\left(0, \ldots, x_{i}, \ldots, 0\right)
$$

is a 8-bit to 256-bit mapping of the form $M_{i} \circ S \circ B_{i}$.
(1) Compute a projection P_{i} such that $P_{i} \circ M_{i} \circ S \circ B_{i}$ is a bijection over \mathbb{F}_{2}^{8}.
(2) Use Biryukov et al. affine equivalence algorithm to recover all possible candidates for $B_{i}\left(\approx 2^{11}\right.$ candidates for AES Sbox).

Identifying the correct blocks

$$
\left(A^{(r+1)}\right)^{-1} \quad \circ \quad \mathrm{MC} \quad \circ\left[\begin{array}{c}
S \\
\vdots \\
S
\end{array}\right] \circ \quad A^{(r)}
$$

Identifying the correct blocks

$$
\widetilde{A}^{-1} \circ\left(\begin{array}{ccccc}
\mathrm{B}_{0}^{-1} & & & \\
& \mathrm{~B}_{1}^{-1} & & \\
& & \mathrm{~B}_{2}^{-1} & \\
& & & \mathrm{~B}_{3}^{-1}
\end{array}\right) \circ \mathrm{MC} \quad \circ\left[\begin{array}{c}
S \\
\vdots \\
S
\end{array}\right] \circ \quad A^{(r)}
$$

Identifying the correct blocks

$$
\tilde{A}^{-1} \circ\left(\begin{array}{lllll}
\mathrm{B}_{0}^{-1} & & & & \\
& \mathrm{~B}_{1}^{-1} & & \\
& & \mathrm{~B}_{2}^{-1} & \\
& & & \mathrm{~B}_{3}^{-1}
\end{array}\right) \circ\left[\begin{array}{c}
S \\
\\
\\
\\
\\
\\
\\
S
\end{array}\right] \circ\left(\begin{array}{llll}
\mathrm{C}_{0} & & & \\
& \mathrm{C}_{5} & & \\
& & \mathrm{C}_{10} & \\
& & & \mathrm{C}_{15}
\end{array}\right) \circ \hat{A}
$$

Identifying the correct blocks

Identifying the correct blocks

Identifying the correct blocks

Knowledge of each B_{i} and $C_{i} \Rightarrow$ extract the key

Implementation (Intel Core i7-6600U CPU @ 2.60 GHz):

- ~ 2000 C++ code lines
- Decomposition $A=B \circ \widetilde{A}:<1$ s
- Get candidates for each $B_{i}, C_{i}: \sim 10 s \quad\left(64 \times \mathcal{O}\left(2^{25}\right)\right)$
- Recovering the correct B_{i} and $C_{i}:<1$ s
- Recovering the externals encodings : <1 s

Total time : $\sim 12 \mathrm{~s}$
Theorical time complexity : $\mathcal{O}\left(2^{31}\right)$
Negligible memory

Implementation (Intel Core i7-6600U CPU @ 2.60 GHz):

- ~ 2000 C++ code lines
- Decomposition $A=B \circ \widetilde{A}:<1$ s
- Get candidates for each $B_{i}, C_{i}: \sim 10$ s $\left(64 \times \mathcal{O}\left(2^{25}\right)\right)$
- Recovering the correct B_{i} and $C_{i}:<1$ s
- Recovering the externals encodings : <1s

Total time : $\sim 12 \mathrm{~s}$
Theorical time complexity : $\mathcal{O}\left(2^{31}\right)$
Negligible memory

Fixing the construction for 60 -bit security would require $n=2^{13}$ parallel AES, leading to an implementation of size $\sim 2^{12} T B$

(1) Introduction

(2) The Baek, Cheon and Hong proposal
(3) Dedicated Attack

4 Generic attack

Generic Problem

Problem

Let F be an n-bit to n-bit permutation such that $F=\mathcal{B} \circ S \circ \mathcal{A}$, where:
(1) \mathcal{A} and \mathcal{B} are n-bit affine layers;
(2) $S=\left(S_{1}, \ldots, S_{k}\right)$ consists of the parallel application of k permutations S_{i} on m bits each (called S-boxes). Note that $n=k m$.
Knowing S, and given oracle access to F (but not F^{-1}), find affine $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}$ such that $F=\mathcal{B}^{\prime} \circ S \circ \mathcal{A}^{\prime}$.

Solving this problem \Longleftrightarrow
Breaking white-box implementations (of SPN) following the CEJO framework

Remarks

- Remark 1: F^{-1} can be built from F in 2^{n} operations
- Remark 2: a priori the problem has many solutions
- Remark 3: When S is composed of a single S-box, this is precisely the affine equivalence problem tackled by Biryukov et al. (with the caveat that F^{-1} is not accessible)

Overview of the algorithm

- Similar to our dedicated attack (but generic)
- 2-step algorithm:
(1) Isolate the input and output subspaces of each Sbox
(2) Apply the generic affine equivalence algorithm by Biryukov et al. to each Sbox separately

Finding input subspace of each S-box

Goal

Build a subspace of dimension m of the input space, such that this subspace spans all 2^{m} possible values at the input of a single fixed Sbox, and yields a constant value at the input of all other Sboxes.

Idea:

(1) Recover k subspaces of dimension $n-m$, each yielding a zero difference at the input of a distinct S-box
(2) Pick any $k-1$ of these spaces and compute their intersection
(3) Result is a subspace of dimension m that yields a zero difference at the input of $k-1$ Sboxes, and spans all values at the input of the remaining Sbox.

Finding input subspace of each S-box

New goal

Build a subspace of dimension $n-m$ of the input space that yields a zero difference at the input of one Sbox.
(1) Pick uniformly at random an input difference Δ
(2) With probability $2^{-m}, \Delta$ yields a zero difference at the input of a particular Sbox.
(3) Check that the set of output differences generated by input difference Δ spans a subspace of dimension $n-m$.
(9) Repeat this process few times to find $n-m$ independent difference Δ.

Recovering affine layers

(1) From previous step, we know \mathcal{A}^{\prime} such that:

$$
F \circ \mathcal{A}^{\prime-1}=\left(\cdots\left|B_{i}\right| \cdots\right) \circ\left[\begin{array}{c}
S \\
\vdots \\
S
\end{array}\right] \circ\left(\begin{array}{lll}
\ddots & & \\
& D_{i} & \\
& & \ddots
\end{array}\right)
$$

Recovering affine layers

(1) From previous step, we know \mathcal{A}^{\prime} such that:

$$
F \circ \mathcal{A}^{\prime-1}=\left(\begin{array}{ll|l|l}
\cdots & B_{i} & \cdots
\end{array}\right) \circ\left[\begin{array}{c}
S \\
\vdots \\
S
\end{array}\right] \circ\left(\begin{array}{lll}
\ddots & & \\
& D_{i} & \\
& & \ddots
\end{array}\right)
$$

(2) Compose with projections and run affine equivalence algorithm to recover D_{i} 's

Recovering affine layers

(1) From previous step, we know \mathcal{A}^{\prime} such that:

$$
F \circ \mathcal{A}^{\prime-1} \circ\left(\begin{array}{lll}
\ddots & & \\
& D_{i}^{-1} & \\
& & \ddots
\end{array}\right) \circ\left[\begin{array}{c}
S^{-1} \\
\vdots \\
S^{-1}
\end{array}\right]=\left(\cdots\left|B_{i}\right| \ldots\right)
$$

(2) Compose with projections and run affine equivalence algorithm to recover D_{i} 's
(3) Retrieve B_{i} 's

Complexities

Complexity of solving the problem:

- Biryukov et al.: $\mathcal{O}\left(n^{3} 2^{2 n}\right)$
- Baek et al.: $\mathcal{O}\left(2^{n}+n^{4} 2^{3 m} / m\right)$
- Our (identical Sboxes): $\mathcal{O}\left(2^{m} n^{3}+2^{m} / n^{3}+\frac{n^{4}}{m}+2^{2 m} m^{2} n\right)$
- Our (different Sboxes): $\mathcal{O}\left(2^{m} n^{3}+2^{m} / n^{3}+\frac{n^{4}}{m}+2^{2 m} m n^{2}\right)$

Application to Baek et al. proposal:

- generic attack: $\mathcal{O}\left(2^{35}\right)$ (allows to decrypt but do not recover the key)
- dedicated attack: $\mathcal{O}\left(2^{31}\right)$ (recover the key)

Thank you for your attention!

1-round attack

From $M \circ(S, \ldots, S) \circ B \circ \widetilde{A}$,
give an equivalent representation $\widetilde{M} \circ(S, \ldots, S) \circ \widetilde{B} \circ \widetilde{A}$

$\oplus T$

Get the external encodings from the key

Suppose that we know the key Remains externals encodings :

$M_{\text {out }} \circ(\mathrm{AES}, \mathrm{AES}) \circ M_{\text {in }}$

Get the external encodings from the key

Suppose that we know the key and $A^{(1)}$ Remains externals encodings :

$$
M_{\text {out }} \circ(\mathrm{AES}, \mathrm{AES}) \circ A^{(1)} \circ \widetilde{M}_{\text {in }}
$$

$\widetilde{M}_{\text {in }}$ is known, built as $\widetilde{M}_{\text {in }}=\left(A^{(1)}\right)^{-1} \circ M_{\text {in }} \Rightarrow$ extract $M_{\text {in }}$

Use $256+1$ values of y to recover $M_{\text {out }}$

